
Spatial Sampling Designs

If you can choose locations to sample, what locations?

2 key questions

1) Single sample or sequential / multi-phase sample
2) What is the study goal?
a) good predictions across an area? Or,
b) good estimate of variogram

Study goals are antagonistic. Intuitively:

for a, want to spread out samples
for b, need some closely spaced values

Predictions across the study area:

Good prediction when a prediction point to an obs. location.
So try to minimize the maximum of those distances
When sample on a grid

square, hexagonal, or herringbone (examples below)
Hexagonal often called triangular
Hexagonal has smallest maximum distance from a grid point
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Hexagonal grid
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Herringbone grid
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Sampling Designs

Good estimate of SV

Want lots of different distances
especially lots of short distances, each with many pairs

information about semivariance at short lags
good extrapolation to nugget

square grid: many pairs separated by grid spacing, none shorter
consider herringbone
Or, add additional points to a square grid (picture next)

How many points and how closely spaced?

R. Webster has done a lot of work on this
his examples are all soil, but the principles are general

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3c Fall 2020 5 / 19

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ●

● ● ●

● ● ●

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3c Fall 2020 6 / 19

Three aspects of a sampling scheme

1) How many points? Webster’s advice:

100 obs “may be acceptable” to estimate a SV
at least 144 obs “seems necessary”
400 obs → “great precision”, “seems extravagent”
Other work: REML estimates require fewer obs (e.g., 50 not 100)

But more recent work by Webster suggests 50 definitely not sufficient

2) Minimum distance between pairs of obs.

If too large, miss short-range spatial correlation
Example: practical range of the SV is 50m

grid spacing = 33m (2/3’rds the range): SV looks like pure nugget
grid = 20m to 25m (ca 1/2 the range), adequate when no nugget
need pairs < 20m to reliably estimate a non-zero nugget

3) Spread points out across the area to predict well

You see the conflict between goals
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Webster’s nested sampling design

Background:

Pre-existing survey of soils in Wyre Forest, England
SV was pure nugget beyond 197m
No pairs of obs. closer than 197m

Want a new set of samples that provides information about short
range spatial correlation and can be used to map soil properties
across 26 km2

Unbalanced scheme designed to collect information on many different
distances and directions

Result: efficient estimation of the SV

Sampling centers separated by 600m

Picture of one “center”
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Webster’s nested sampling design
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Adaptive sampling

Concept:

Collect preliminary data
analyze sample then plan new observations

Adaptive sampling:

krige surface,
locate places with highest prediction variance,
place new samples there.
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Practical advice: sampling to estimate variogram

Based on Chapter 5 in Oliver and Webster, 2015
All this advice assumes isotropy

Need a prior estimate of the correlation range (= practical range)

How far do you have to move to get essentially no spatial correlation?

1) sample so that the largest lag distance > correlation range

Remember, variograms usually only computed to 1/2 smallest plot
dimension

2) Want about 6 SV estimates within correlation range and 4 larger

That’s so you get a reasonable idea of SV shape.
When 2 points within correl. range, any model w/nugget will fit
Have 2 data values and model has 2 parameters (range and nugget)

3) Need 100-150 locations to get a reasonably precise empirical
variogram
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Practical advice: sampling to map the response

Goal: minimize the max prediction variance over the prediction grid

equiv. to minimizing max distance between a sampling point and any
other

Smallest when sample on a grid.
Smallest max distance for hexagonal = triangular grid
Square grid almost as good, often much more practical

Max distance 14% larger
But square grid has 4 neighbors; hexagonal grid only has 3
Combination ⇒ Max prediction variance for square grid only slightly >
hex grid

gstat ossfim() function will calculate max pred. var. given a SV
model, grid spacing, and block kriging

Short range correlation ⇒ closely spaced grid and lots of points
But at least you will be aware of the heterogeneity

If you don’t have a prior estimate of correlation range?
Can you use ancillary information (e.g. remote sensed spectral band)?
If not, everything is a guess (and no better)
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Cokriging

Two (or more) spatial variables, Z1 and Z2

More (usually many more) observations for Z1 than Z2

Two possible relationships:
Z1 and Z2 measured at same locations, Z1 measured at prediction
points
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Use UK with Z1 as the covariate
c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3c Fall 2020 13 / 19

Cokriging

Z1 and Z2 measured at different locations
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Cokriging uses information from Z1 to predict Z2
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Cokriging

Concepts:

Each is spatially correlated: Cov Z1(s), Z1(s + h)
If measured at same location, are correlated: Cov Z1(s), Z2(s)
Result: spatial cross-correlation: Cov Z1(s), Z2(s + h)
estimate that cross correlation by cross semivariogram:

γij(h) = E [Zi (s)− Zi (s + h)] [Zj(s)− Zj(s + h)]

i.e., how the covariance between Zi and Zj changes with distance
use to improve predictions of Z2 and/or Z1

various applications

most promising is to use fine grid to predict a sparsely observed, but
correlated, value

Thoughts based on my limited experience:

needs good correlations between Z1 and Z2 to substantially improve
predictions

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3c Fall 2020 15 / 19

co-kriging

How actually implemented:

stack Zj(s) values below Zi (s) values to make one long vector
that stacked vector has a partitioned VC matrix:

VC for Zi

... Cov Zi ,Zj

γi (h)
... γij(h)

· · · · · · · · ·

Cov Zj ,Zi

... VC for Zj

γji (h)
... γj(h)


Must satisfy some requirements (e.g. positive definite, next slide)
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postive-definite matrices

A fundamental, important property of a Variance-Covariance matrix

Technical definition: V is a symmetric matrix

V is positive definite iff a′Va > 0 for every choice of the vector a.

Why important:

V is the variance-covariance matrix of random vector Z
To be a valid VC matrix:

Var Zi > 0 for each element of Z , so all elements of diag(V ) > 0
AND Var of any linear combination of Zi , e.g. Z1 + Z2 − 0.5Z3, must
be > 0.
that linear combination is aZ and has variance a′Va

So if V is not positive definite, it is not a valid VC matrix.
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postive-definite matrices

Example:

V =

[
1 1.5

1.5 1.5

]
Var Z1 = 1, Var Z2 = 1.5, Var Z1 + Z2 = 1 + 1.5 + 2*1.5 = 5.5
But, Var Z1 − Z2 = 1 + 1.5 - 2*1.5 = -0.5. OOPS!
V is not a valid VC matrix

Diagnosis:

Calculate correlation matrix corresponding to V . All off-diagonal
elements between -1 and 1
Better: calculate eigenvalues of V. All are > 0.
Some eigenvalues = 0 means that some correlations = -1 or 1, linear
dependencies among variables.
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Linear model of coregionalization

So need VC matrix for Z to be positive definite

Hard to do for arbitrary γi (h), γj(h), and γij(h)
Can force V to be positive definite by using linear model of
coregionalization
the three SV’s have same nugget, same range, positive definite matrix
of sill values

co-kriging uses cross-variogram to make predictions

same goal minimize MSEP, same form of predictor
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